
L1-Bandwidth Aware Thread Allocation in
Multicore SMT Processors

J. Feliu, J. Sahuquillo, S. Petit and J. Duato
Universitat Politècnica de València

9 September 2013
Edinburgh, United Kingdom

• Introduction
• Experimental platform
• Effects of L1 bandwidth on performance of SMT processors
• L1-bandwidth aware thread allocation policies
• Evaluation methodology
• Performance evaluation results
• Conclusions

PACT’13, Edinburgh, United Kingdom

Outline

2

• Introduction
• Experimental platform
• Effects of L1 bandwidth on performance of SMT processors
• L1-bandwidth aware thread allocation policies
• Evaluation methodology
• Performance evaluation results
• Conclusions

PACT’13, Edinburgh, United Kingdom

Outline

3

• Simultaneous multithreading (SMT) processors exploit:
• Instruction-level parallelism
• Thread-level parallelism
• If the demand of a shared resource exceeds what it can provide

Performance can be damaged

PACT’13, Edinburgh, United Kingdom

Introduction

4

• Simultaneous multithreading (SMT) processors exploit:
• Instruction-level parallelism
• Thread-level parallelism

• Threads are continuously sharing some processor resources
• If the demand of a shared resource exceeds what it can provide

Performance can be damaged

PACT’13, Edinburgh, United Kingdom

Introduction

5

• Simultaneous multithreading (SMT) processors exploit:
• Instruction-level parallelism
• Thread-level parallelism

• Threads are continuously sharing some processor resources
• If the demand of a shared resource exceeds what it can provide
Performance can be damaged

PACT’13, Edinburgh, United Kingdom

Introduction

6

• Simultaneous multithreading (SMT) processors exploit:
• Instruction-level parallelism
• Thread-level parallelism

• Threads are continuously sharing some processor resources
• If the demand of a shared resource exceeds what it can provide
Performance can be damaged

• Smart thread to core mapping policies can help to alleviate the
contention in the shared resources

PACT’13, Edinburgh, United Kingdom

Introduction

7

PACT’13, Edinburgh, United Kingdom

Introduction

• A critical shared resource in any CMP is the
memory bandwidth

• Main memory bandwidth
• LLC bandwidth
• Bandwidth at any shared cache

• Addressed with bandwidth-aware schedulers
• L1 caches are private to cores, and thus they have not

been considered yet

• When the cores are SMT, the thread must share
the L1 cache
L1 bandwidth contention may impact the

performance

8

PACT’13, Edinburgh, United Kingdom

Introduction

• A critical shared resource in any CMP is the
memory bandwidth

• Main memory bandwidth
• LLC bandwidth
• Bandwidth at any shared cache

• Addressed with bandwidth-aware schedulers
• L1 caches are private to cores, and thus they have not

been considered yet

• When the cores are SMT, the thread must share
the L1 cache
L1 bandwidth contention may impact the

performance

9

PACT’13, Edinburgh, United Kingdom

Introduction

• A critical shared resource in any CMP is the
memory bandwidth

• Main memory bandwidth
• LLC bandwidth
• Bandwidth at any shared cache

• Addressed with bandwidth-aware schedulers
• L1 caches are private to cores, and thus they have not

been considered yet

• When the cores are SMT, the thread must share
the L1 cache
L1 bandwidth contention may impact the

performance

10

PACT’13, Edinburgh, United Kingdom

Introduction

• A critical shared resource in any CMP is the
memory bandwidth

• Main memory bandwidth
• LLC bandwidth
• Bandwidth at any shared cache

• Addressed with bandwidth-aware schedulers
• L1 caches are private to cores, and thus they have not

been considered yet

• When the cores are SMT, the thread must share
the L1 cache
L1 bandwidth contention may impact the

performance

11

PACT’13, Edinburgh, United Kingdom

Introduction

• A critical shared resource in any CMP is the
memory bandwidth

• Main memory bandwidth
• LLC bandwidth
• Bandwidth at any shared cache

• Addressed with bandwidth-aware schedulers
• L1 caches are private to cores, and thus they have not

been considered yet

• When the cores are SMT, the thread must share
the L1 cache
 L1 bandwidth contention may impact the
performance

12

• Analysis of the connection between the L1 bandwidth and
performance of the processes

• Strong connection between the L1 bandwidth consumption and performance

• Thread allocation strategies to deal with L1 bandwidth contention

PACT’13, Edinburgh, United Kingdom

Introduction
Contributions

13

• Analysis of the connection between the L1 bandwidth and
performance of the processes

• Strong connection between the L1 bandwidth consumption and performance

• Thread allocation strategies to deal with L1 bandwidth contention

PACT’13, Edinburgh, United Kingdom

Introduction
Contributions

14

• Introduction
• Experimental platform
• Effects of L1 bandwidth on performance of SMT processors
• L1-bandwidth aware thread allocation policies
• Evaluation methodology
• Performance evaluation results
• Conclusions

PACT’13, Edinburgh, United Kingdom

Outline

15

• Experiments carried out in a Intel Xeon E5645
• 6 dual-thread cores
• Private L1 (32 KB x 6) and L2 (256 KB x 6) caches
• Shared 12 MB LLC

• Linux with kernel 3.3.0
• Libpfm 4.3 is used to manage performance

counters
• L1 requests, instructions and cycles for each

running process are gathered dynamically
• SPEC CPU2006 benchmarks with reference

inputs

PACT’13, Edinburgh, United Kingdom

Experimental platform

16

• Experiments carried out in a Intel Xeon E5645
• 6 dual-thread cores
• Private L1 (32 KB x 6) and L2 (256 KB x 6) caches
• Shared 12 MB LLC

• Linux with kernel 3.3.0
• Libpfm 4.3 is used to manage performance

counters
• L1 requests, instructions and cycles for each

running process are gathered dynamically
• SPEC CPU2006 benchmarks with reference

inputs

PACT’13, Edinburgh, United Kingdom

Experimental platform

17

• Introduction
• Experimental platform
• Effects of L1 bandwidth on performance of SMT processors
• L1-bandwidth aware thread allocation policies
• Evaluation methodology
• Performance evaluation results
• Conclusions

PACT’13, Edinburgh, United Kingdom

Outline

18

• Stand-alone execution
• Average
 Average TRL1 and IPC in stand-alone execution

• Dynamic
 The process behavior can widely vary during the execution, so lets analyze the dynamic

value of both metrics

• Concurrent execution
 Two threads running simultaneously on a given core share the L1 cache
 Their performance depend on the L1 bandwidth they achieve

 Competition for the L1 bandwidth will limit the performance

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors

19

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Average values

L1 bandwidth – TR L1 Performance – IPC

• Certain correlation between both metrics
• Benchmarks with high TRL1 present high IPC
• Benchmarks with low TRL1 present low IPC

• Benchmarks with similar TRL1 (or IPC) can also show different TRL1 (or IPC)

20

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Average values

• Certain correlation between both metrics
• Benchmarks with high TRL1 present high IPC
• Benchmarks with low TRL1 present low IPC

• Benchmarks with similar TRL1 (or IPC) can also show different TRL1 (or IPC)

L1 bandwidth – TR L1 Performance – IPC

21

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Average values

• Certain correlation between both metrics
• Benchmarks with high TRL1 present high IPC
• Benchmarks with low TRL1 present low IPC

• Benchmarks with similar TRL1 (or IPC) can also show different TRL1 (or IPC)

L1 bandwidth – TR L1 Performance – IPC

22

L1 bandwidth – TR L1 Performance – IPC

• Certain correlation between both metrics
• Benchmarks with high TRL1 present high IPC
• Benchmarks with low TRL1 present low IPC

• Benchmarks with similar TRL1 (or IPC) can also show different TRL1 (or IPC)

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Average values

23

• Stand-alone execution
• Average
Certain similarities appear among average values of L1 bandwidth and IPC,

but there is no clear evidence about the connection between them
• Dynamic
 The process behavior can widely vary during the execution, so lets analyze the

dynamic value of both metrics

• Concurrent execution
 Two threads running simultaneously on a given core share the L1 cache
 Their performance depend on the L1 bandwidth they achieve

 Competition for the L1 bandwidth will limit the performance

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors

24

• Stand-alone execution
• Average
Certain similarities appear among average values of L1 bandwidth and IPC,

but there is no clear evidence about the connection between them
• Dynamic
 The process behavior can widely vary during the execution, so lets analyze the

dynamic value of both metrics

• Concurrent execution
 Two threads running simultaneously on a given core share the L1 cache
 Their performance depend on the L1 bandwidth they achieve

 Competition for the L1 bandwidth will limit the performance

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors

25

PACT’13, Edinburgh, United Kingdom

TRL1 and IPC evolution with time for mcf

• The plot presents
• L1 bandwidth
• IPC

• Strong connection between L1
bandwidth and IPC dynamically

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Dynamic values

26

PACT’13, Edinburgh, United Kingdom

TRL1 and IPC evolution with time for bwaves

• The plot presents
• L1 bandwidth
• IPC

• Strong connection between L1
bandwidth and IPC dynamically

• Almost identical shape

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Dynamic values

27

PACT’13, Edinburgh, United Kingdom

TRL1 and IPC evolution with time for cactusADM

• The plot presents
• L1 bandwidth
• IPC

• Strong connection between L1
bandwidth and IPC dynamically

• Almost identical shape
• Synchronized rises and drops with

similar magnitude

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Dynamic values

28

PACT’13, Edinburgh, United Kingdom

TRL1 and IPC evolution with time for xalancbmk

• The plot presents
• L1 bandwidth
• IPC

• Strong connection between L1
bandwidth and IPC dynamically

• Almost identical shape
• Synchronized rises and drops with

similar magnitude
• Even small peaks in L1 bandwidth

trigger synchronized peaks in the
IPC

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Dynamic values

29

PACT’13, Edinburgh, United Kingdom

TRL1 and IPC evolution with time for astar TRL1 and IPC evolution with time for bzip2

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Dynamic values

30

PACT’13, Edinburgh, United Kingdom

TRL1 and IPC evolution with time for perlbench TRL1 and IPC evolution with time for milc

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Dynamic values

31

PACT’13, Edinburgh, United Kingdom

TRL1 and IPC evolution with time for sjeng TRL1 and IPC evolution with time for povray

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Dynamic values

32

PACT’13, Edinburgh, United Kingdom

TRL1 and IPC evolution with time for gcc TRL1 and IPC evolution with time for zeusMP

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Dynamic values

33

• Stand-alone execution
• Average
Certain similarities appear among average values of L1 bandwidth and IPC,

but there is no clear evidence about the connection between them
• Dynamic
Synchronized and correlated trend between the L1 bandwidth of a thread and its

performance

• Concurrent execution
 Two threads running simultaneously on a given core share the L1 cache
 Their performance depend on the L1 bandwidth they achieve

 Competition for the L1 bandwidth will limit the performance

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors

34

• Stand-alone execution
• Average
Certain similarities appear among average values of L1 bandwidth and IPC,

but there is no clear evidence about the connection between them
• Dynamic
Synchronized and correlated trend between the L1 bandwidth of a thread and its

performance

• Concurrent execution
 Two threads running simultaneously on a given core share the L1 cache
 Their performance depend on the L1 bandwidth they achieve

 Competition for the L1 bandwidth will limit the performance

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors

35

• Stand-alone execution
• Average
Certain similarities appear among average values of L1 bandwidth and IPC,

but there is no clear evidence about the connection between them
• Dynamic
Synchronized and correlated trend between the L1 bandwidth of a thread and its

performance

• Concurrent execution
 Two threads running simultaneously on a given core share the L1 cache
 Their performance depend on the L1 bandwidth they achieve

 Competition for the L1 bandwidth will limit the performance

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors

36

• Stand-alone execution
• Average
Certain similarities appear among average values of L1 bandwidth and IPC,

but there is no clear evidence about the connection between them
• Dynamic
Synchronized and correlated trend between the L1 bandwidth of a thread and its

performance

• Concurrent execution
 Two threads running simultaneously on a given core share the L1 cache
 Their performance depend on the L1 bandwidth they achieve
 Competition for the L1 bandwidth will limit the performance

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors

37

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

38

Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

PACT’13, Edinburgh, United Kingdom

TRL1 of bwaves and cactusADM running on the same core

TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

39

Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

PACT’13, Edinburgh, United Kingdom

TRL1 of bwaves and cactusADM running on the same core

TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• Bwaves maximum is around 1400 t/usec (2100 t/usec in
stand-alone execution)

• CactusADM maximum is around 800 t/usec (1300 t/usec in
standa-alone execution)

40

Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

PACT’13, Edinburgh, United Kingdom

TRL1 of bwaves and cactusADM running on the same core

TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• Bwaves maximum is around 1400 t/usec (2100 t/usec in
stand-alone execution)

• CactusADM maximum is around 800 t/usec (1300 t/usec in
standa-alone execution)

1400 t/us

800 t/us

2100 t/us

1300 t/us

41

Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

PACT’13, Edinburgh, United Kingdom

TRL1 of bwaves and cactusADM running on the same core

TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

• Increasing trend of the L1 bandwidth of bwaves due to L1
bandwidth utilization decrease of cactusADM

• Peaks on the L1 bandwidth of cactusADM due to L1
bandwidth drops of bwaves

42

Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

PACT’13, Edinburgh, United Kingdom

TRL1 of bwaves and cactusADM running on the same core

TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

• Increasing trend of the L1 bandwidth of bwaves due to L1
bandwidth utilization decrease of cactusADM

• Peaks on the L1 bandwidth of cactusADM due to L1
bandwidth drops of bwaves

Rise due to the co-runner drop

Implicit drop

43

Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

PACT’13, Edinburgh, United Kingdom

TRL1 of bwaves and cactusADM running on the same core

TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

• Increasing trend of the L1 bandwidth of bwaves due to L1
bandwidth utilization decrease of cactusADM

• Peaks on the L1 bandwidth of cactusADM due to L1
bandwidth drops of bwaves

44

Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

TRL1 of bwaves and cactusADM running on the same core
TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

• The observations of the L1 bandwidth are applicable to
performance

IPC of bwaves and cactusADM running on the same core 45

Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

TRL1 of h264ref and bwaves running on the same core
TRL1 and IPC evolution with time for h264ref TRL1 and IPC evolution with time for bwaves

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

• The observations of the L1 bandwidth are applicable to
performance

IPC of h264ref and bwaves running on the same core 46

Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

TRL1 of bzip2 and h264ref running on the same core
TRL1 and IPC evolution with time for bzip2 TRL1 and IPC evolution with time for h264ref

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

• The observations of the L1 bandwidth are applicable to
performance

IPC of bzip2 and h264ref running on the same core 47

Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

TRL1 of gamess and dealII running on the same core
TRL1 and IPC evolution with time for gamess TRL1 and IPC evolution with time for dealII

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

• The observations of the L1 bandwidth are applicable to
performance

IPC of gamess and dealII running on the same core 48

• Stand-alone execution
• Average

Certain similarities appear among L1 bandwidth and IPC, but there is no clear evidence
about the connection between them.

• Dynamic
Synchronized and correlated trend between the L1 bandwidth of a thread and its

performance.

• Concurrent execution
 Insufficient L1 bandwidth to satisfy the requirements of two processes.

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors

49

• Stand-alone execution
• Average

Certain similarities appear among L1 bandwidth and IPC, but there is no clear evidence
about the connection between them.

• Dynamic
Synchronized and correlated trend between the L1 bandwidth of a thread and its

performance.

• Concurrent execution
 Insufficient L1 bandwidth to satisfy the requirements of two processes.
L1 bandwidth rises and drops on a the L1 bandwidth (or performance) of a process

trigger the opposite behavior in the co-runner

PACT’13, Edinburgh, United Kingdom

Effects of L1 bandwidth on performance of SMT processors

50

• Introduction
• Experimental platform
• Effects of L1 bandwidth on performance of SMT processors
• L1-bandwidth aware thread allocation policies
• Evaluation methodology
• Performance evaluation results
• Conclusions

PACT’13, Edinburgh, United Kingdom

Outline

51

• We devise two policies
• Static thread allocation policy (St2c)
• Dynamic thread allocation policy (Dt2c)

• The goal of both policies is to balance the overall L1 bandwidth of the running
processes among the processor cores

• The policies rely on the L1 bandwidth requirements of the processes to guide the
thread allocation

• Differ in how L1 bandwidth is estimated

• The t2c policies can work as a step of a global scheduler
• No process selection performed in our policies

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies

52

• We devise two policies
• Static thread allocation policy (St2c)
• Dynamic thread allocation policy (Dt2c)

• The goal of both policies is to balance the overall L1 bandwidth of the running
processes among the processor cores

• The policies rely on the L1 bandwidth requirements of the processes to guide the
thread allocation

• Differ in how L1 bandwidth is estimated

• The t2c policies can work as a step of a global scheduler
• No process selection performed in our policies

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies

53

• We devise two policies
• Static thread allocation policy (St2c)
• Dynamic thread allocation policy (Dt2c)

• The goal of both policies is to balance the overall L1 bandwidth of the running
processes among the processor cores

• The policies rely on the L1 bandwidth requirements of the processes to guide the
thread allocation

• Differ in how L1 bandwidth is estimated

• The t2c policies can work as a step of a global scheduler
• No process selection performed in our policies

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies

54

• We devise two policies
• Static thread allocation policy (St2c)
• Dynamic thread allocation policy (Dt2c)

• The goal of both policies is to balance the overall L1 bandwidth of the running
processes among the processor cores

• The policies rely on the L1 bandwidth requirements of the processes to guide the
thread allocation

• Differ in how L1 bandwidth is estimated

• The t2c policies can work as a step of a global scheduler
• No process selection performed in our policies

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies

55

• Threads are allocated to cores based on the average L1 bandwidth
requirement of each process

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
St2c: Static thread to core allocation policy

56

• Threads are allocated to cores based on the average L1 bandwidth
requirement of each process

• Requires a preliminary stand-alone execution of each process

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
St2c: Static thread to core allocation policy

57

• Threads are allocated to cores based on the average L1 bandwidth
requirement of each process

• Requires a preliminary stand-alone execution of each process
• Thread to core mappings only update when the running processes change

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
St2c: Static thread to core allocation policy

58

• Threads are allocated to cores based on the average L1 bandwidth
requirement of each process

• Requires a preliminary stand-alone execution of each process
• Thread to core mappings only update when the running processes change

• To balance L1 bandwidth
• Threads are sorted in increasing L1 bandwidth
• Reiteratively, the threads with maximum and minimum requirements are

selected to share a given core

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
St2c: Static thread to core allocation policy

59

• Major benefits
• Good estimation for benchmarks with uniform L1-bandwidth shape

• 11 of 25 analyzed benchmarks
 Avoids interferences of co-runners in the L1 bandwidth estimations

• Major drawbacks
 Requires a preliminary run of processes
 Bad L1 bandwidth estimation for processes with non-uniform shape

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
St2c: Static thread to core allocation policy

60

• Major benefits
• Good estimation for benchmarks with uniform L1-bandwidth shape
• Avoids interferences of co-runners in the L1 bandwidth estimations

• L1 bandwidth measured in stand-alone execution

• Major drawbacks
 Requires a preliminary run of processes
 Bad L1 bandwidth estimation for processes with non-uniform shape

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
St2c: Static thread to core allocation policy

61

• Major benefits
• Good estimation for benchmarks with uniform L1-bandwidth shape
• Avoids interferences of co-runners in the L1 bandwidth estimations

• Major drawbacks
• Requires a preliminary run of processes

• To estimate the L1 bandwidth
 Bad L1 bandwidth estimation for processes with non-uniform shape

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
St2c: Static thread to core allocation policy

62

• Major benefits
• Good estimation for benchmarks with uniform L1-bandwidth shape
• Avoids interferences of co-runners in the L1 bandwidth estimations

• Major drawbacks
• Requires a preliminary run of processes
• Poor L1 bandwidth estimation for processes with non-uniform shape

• 14 of the 25 analyzed benchmarks

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
St2c: Static thread to core allocation policy

63

• Dt2c tackles both mentioned shortcomings of the St2c
• The L1 bandwidth requirements of each process is updated dynamically at

run-time using performance counters
Does not require any preliminary information of the processes
 Captures the L1 bandwidth requirements of benchmarks with non-uniform shapes

• Balancing L1 bandwidth can be performed as stated in the St2c policy

• Thread to core mappings are updated dynamically
• As soon as the L1 bandwidth requirements change

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
Dt2c: Dynamic thread to core allocation policy

64

• Dt2c tackles both mentioned shortcoming of the St2c
• The L1 bandwidth requirements of each process is dynamically updated at

run-time using performance counters
Does not require any preliminary information of the processes
 Captures the L1 bandwidth requirements of benchmarks with non-uniform shapes

• Balancing L1 bandwidth can be performed as stated in the St2c policy

• Thread to core mappings are updated dynamically
• As soon as the L1 bandwidth requirements change

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
Dt2c: Dynamic thread to core allocation policy

65

• Dt2c tackles both mentioned shortcoming of the St2c
• The L1 bandwidth requirements of each process is dynamically updated at

run-time using performance counters
• Does not require any previous information of the processes
 Captures the L1 bandwidth requirements of benchmarks with non-uniform shapes

• Balancing L1 bandwidth can be performed as stated in the St2c policy

• Thread to core mappings are updated dynamically
• As soon as the L1 bandwidth requirements change

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
Dt2c: Dynamic thread to core allocation policy

66

• Dt2c tackles both mentioned shortcoming of the St2c
• The L1 bandwidth requirements of each process is dynamically updated at

run-time using performance counters
• Does not require any previous information of the processes
• Captures the L1 bandwidth requirements of benchmarks with non-uniform shapes

• Balancing L1 bandwidth can be performed as stated in the St2c policy

• Thread to core mappings are updated dynamically
• As soon as the L1 bandwidth requirements change

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
Dt2c: Dynamic thread to core allocation policy

67

• Dt2c tackles both mentioned shortcoming of the St2c
• The L1 bandwidth requirements of each process is dynamically updated at

run-time using performance counters
• Does not require any previous information of the processes
• Captures the L1 bandwidth requirements of benchmarks with non-uniform shapes

• Balancing L1 bandwidth can be performed as stated in the St2c policy
• L1 bandwidth updated every OS quantum
Thread to core mappings are updated after each OS quantum

PACT’13, Edinburgh, United Kingdom

L1 bandwidth aware thread allocation policies
Dt2c: Dynamic thread to core allocation policy

68

• Introduction
• Experimental platform
• Effects of L1 bandwidth on performance of SMT processors
• L1-bandwidth aware thread allocation policies
• Evaluation methodology
• Performance evaluation results
• Conclusions

PACT’13, Edinburgh, United Kingdom

Outline

69

• Four thread allocation policies are compared
• St2c
• Dt2c
• Naïve t2c

• Random, allowing unbalancing of L1 bandwidth among cores
• Linux t2c

• The affinity of all the threads is set to all the cores. Thus, Linux decides the thread
allocation

• All the policies are implemented in a user-level scheduler
• Sharing the main code, and any possible overhead

PACT’13, Edinburgh, United Kingdom

Evaluation methodology

70

• Four thread allocation policies are compared
• St2c
• Dt2c
• Naïve t2c

• Random, allowing unbalancing of L1 bandwidth among cores
• Linux t2c

• The affinity of all the threads is set to all the cores. Thus, Linux decides the thread
allocation

• All the policies are implemented in a user-level scheduler
• Sharing the main code, and any possible overhead

PACT’13, Edinburgh, United Kingdom

Evaluation methodology

71

• Four thread allocation policies are compared
• St2c
• Dt2c
• Naïve t2c

• Random, allowing unbalancing of L1 bandwidth among cores
• Linux t2c

• The affinity of all the threads is set to all the cores. Thus, Linux decides the thread
allocation

• All the policies are implemented in a user-level scheduler
• Sharing the main code, and any possible overhead

PACT’13, Edinburgh, United Kingdom

Evaluation methodology

72

• Four thread allocation policies are compared
• St2c
• Dt2c
• Naïve t2c

• Random, allowing unbalancing of L1 bandwidth among cores
• Linux t2c

• The affinity of all the threads is set to all the cores. Thus, Linux decides the thread
allocation

• All the policies are implemented in a user-level scheduler
• Sharing the main code, and any possible overhead

PACT’13, Edinburgh, United Kingdom

Evaluation methodology

73

• Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads

• The workloads run with half the number of cores than the number of benchmarks
• All the hardware threads are used

• Target number of instructions for each benchmarks
• Instructions required to run 200 seconds in stand-alone execution

• All the processes of the mix run until the last processes completes its target number
of instructions

• Performance metrics of each process are obtained at the point it completes its target number
of instructions

• We compare the same part of the execution of each benchmarks across different runs of the
mix

• The contribution

PACT’13, Edinburgh, United Kingdom

Evaluation methodology

74

• Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads

• The workloads run with half the number of cores than the number of benchmarks
• All the hardware threads are used

• Target number of instructions for each benchmarks
• Instructions required to run 200 seconds in stand-alone execution

• All the processes of the mix run until the last processes completes its target number
of instructions

• Performance metrics of each process are obtained at the point it completes its target number
of instructions

• We compare the same part of the execution of each benchmarks across different runs of the
mix

• The contribution

PACT’13, Edinburgh, United Kingdom

Evaluation methodology

75

• Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads

• The workloads run with half the number of cores than the number of benchmarks
• All the hardware threads are used

• Target number of instructions for each benchmarks
• Instructions required to run 200 seconds in stand-alone execution

• All the processes of the mix run until the last processes completes its target number
of instructions

• Performance metrics of each process are obtained at the point it completes its target number
of instructions

• We compare the same part of the execution of each benchmarks across different runs of the
mix

• The contribution

PACT’13, Edinburgh, United Kingdom

Evaluation methodology

76

• Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads

• The workloads run with half the number of cores than the number of benchmarks
• All the hardware threads are used

• Target number of instructions for each benchmarks
• Instructions required to run 200 seconds in stand-alone execution

• All the processes of the mix run until the last processes completes its target number
of instructions

• Performance metrics of each process are obtained at the point it completes its target number
of instructions

• We compare the same part of the execution of each benchmarks across different runs of the
mix

• The contribution

PACT’13, Edinburgh, United Kingdom

Evaluation methodology

77

• Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads

• The workloads run with half the number of cores than the number of benchmarks
• All the hardware threads are used

• Target number of instructions for each benchmarks
• Instructions required to run 200 seconds in stand-alone execution

• All the processes of the mix run until the last processes completes its target number
of instructions

• The performance metric (IPC) of each process is obtained at the point it completes its target
number of instructions

• We compare the same part of the execution of each benchmarks across different runs of the
mix

• The contribution

PACT’13, Edinburgh, United Kingdom

Evaluation methodology

78

• Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads

• The workloads run with half the number of cores than the number of benchmarks
• All the hardware threads are used

• Target number of instructions for each benchmarks
• Instructions required to run 200 seconds in stand-alone execution

• All the processes of the mix run until the last processes completes its target number
of instructions

• The performance metric (IPC) of each process is obtained at the point it completes its target
number of instructions

• We compare the same part of the execution of each benchmarks across different runs of the
mix

• The contribution

PACT’13, Edinburgh, United Kingdom

Evaluation methodology

79

• Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads

• The workloads run with half the number of cores than the number of benchmarks
• All the hardware threads are used

• Target number of instructions for each benchmarks
• Instructions required to run 200 seconds in stand-alone execution

• All the processes of the mix run until the last processes completes its target number
of instructions

• The performance metric (IPC) of each process is obtained at the point it completes its target
number of instructions

• We compare the same part of the execution of each benchmarks across different runs of the
mix

• The contribution of all the processes to the mix metrics is equalized

PACT’13, Edinburgh, United Kingdom

Evaluation methodology

80

• Average IPC
• Plain metric to measure throughput improvements
• Can favor unfair scheduling

• Threads with higher IPC could receive higher weight to improve the average IPC
These situations are avoided in our methodology, because the set of running processes

is fixed and kept the entire execution

• Harmonic mean of weighted IPC
• Encapsulates fairness additionally to performance

• The harmonic mean tends to be lower if any thread presents lower speedup than the
others

PACT’13, Edinburgh, United Kingdom

Evaluation methodology
Metrics

81

• Average IPC
• Plain metric to measure throughput improvements
• Can favor unfair scheduling

• Threads with higher IPC could receive higher weight to improve the average IPC
These situations are avoided in our methodology, because the set of running processes

is fixed and kept the entire execution

• Harmonic mean of weighted IPC
• Encapsulates fairness additionally to performance

• The harmonic mean tends to be lower if any thread presents lower speedup than the
others

PACT’13, Edinburgh, United Kingdom

Evaluation methodology
Metrics

82

• Average IPC
• Plain metric to measure throughput improvements
• Can favor unfair scheduling

• Threads with higher IPC could receive higher weight to improve the average IPC
• These situations are avoided in our methodology, because the set of running processes

is fixed and kept the entire execution

• Harmonic mean of weighted IPC
• Encapsulates fairness additionally to performance

• The harmonic mean tends to be lower if any thread presents lower speedup than the
others

PACT’13, Edinburgh, United Kingdom

Evaluation methodology
Metrics

83

• Average IPC
• Plain metric to measure throughput improvements
• Can favor unfair scheduling

• Threads with higher IPC could receive higher weight to improve the average IPC
• These situations are avoided in our methodology, because the set of running processes

is fixed and kept the entire execution

• Harmonic mean of weighted IPC
• Encapsulates fairness additionally to performance

• The harmonic mean tends to be low if any thread presents much lower speedup than the
others

• others

PACT’13, Edinburgh, United Kingdom

Evaluation methodology
Metrics

84

• The higher the bandwidth requirements
• The higher L1 bandwidth contention can induce
• The higher performance degradation can suffer
The more critical its allocation is

• Mixes are classified according to their number of benchmarks with
extreme L1 bandwidth requirements

• Balanced mixes: half of the benchmarks with extreme L1 bandwidth
• Non-balanced mixes: fewer number of benchmarks with extreme L1

bandwidth requirements than with lower requirements

PACT’13, Edinburgh, United Kingdom

Evaluation methodology
Mix design

85

• The higher the bandwidth requirements
• The higher L1 bandwidth contention can induce
• The higher performance degradation can suffer

The more critical its allocation is

• Mixes are classified according to their number of benchmarks with
extreme L1 bandwidth requirements

• Balanced mixes: half of the benchmarks with extreme L1 bandwidth
• Non-balanced mixes: fewer number of benchmarks with extreme L1

bandwidth requirements than with lower requirements

PACT’13, Edinburgh, United Kingdom

Evaluation methodology
Mix design

86

• The higher the bandwidth requirements
• The higher L1 bandwidth contention can induce
• The higher performance degradation can suffer

The more critical its allocation is

• Mixes are classified according to their number of benchmarks with
extreme L1 bandwidth requirements (more than 1700 trans/usec)

• Balanced mixes: half of the benchmarks with extreme L1 bandwidth
• Non-balanced mixes: fewer number of benchmarks with extreme L1

bandwidth requirements than with lower requirements

PACT’13, Edinburgh, United Kingdom

Evaluation methodology
Mix design

87

• Introduction
• Experimental platform
• Effects of L1 bandwidth on performance of SMT processors
• L1-bandwidth aware thread allocation policies
• Evaluation methodology
• Performance evaluation results
• Conclusions

PACT’13, Edinburgh, United Kingdom

Outline

88

• Average speedups of 20 executions of each mix and 95% confidence intervals
• Balanced mixes include half of the mixes with extreme L1 bandwidth
• Non balanced mixes nomenclature

 XXE refers to a mix with X extreme L1 bandwidth benchmarks

PACT’13, Edinburgh, United Kingdom

Performance evaluation results
Speedup of the average IPC w.r.t. naïve t2c

89

• Speedups around or above 6%
• 14 mixes with the Dt2c
• 10 mixes with the St2c
• 3 mixes with the Linux t2c

PACT’13, Edinburgh, United Kingdom

Performance evaluation results
Speedup of the average IPC w.r.t. naïve t2c

90

• Speedups below 2%
• 5 mixes with the Linux t2c
• 1 mix with the St2c
• 1 mix with the Dt2c

PACT’13, Edinburgh, United Kingdom

Performance evaluation results
Speedup of the average IPC w.r.t. naïve t2c

91

PACT’13, Edinburgh, United Kingdom

Performance evaluation results
Speedup of the average IPC w.r.t. naïve t2c

• Dt2c performs better on average than St2c
• Best performance with Dt2c in 19 mixes

• Major differences when the mix includes a wider set of benchmarks with non-uniform shape in the L1
bandwidth

• Major benefit of St2c relative to Dt2c in mix 6
• Includes GemsFDTD benchmarks whose L1 bandwidth demand varies too fast

92

PACT’13, Edinburgh, United Kingdom

Performance evaluation results
Speedup of the average IPC w.r.t. naïve t2c

• Dt2c performs better on average than St2c
• Best performance with Dt2c in 19 mixes

• Major differences when the mix includes a wider set of benchmarks with non-uniform shape in the L1
bandwidth

• Major benefit of St2c relative to Dt2c in mix 6
• Includes GemsFDTD benchmarks whose L1 bandwidth demand varies too fast

93

PACT’13, Edinburgh, United Kingdom

Performance evaluation results
Speedup of the average IPC w.r.t. naïve t2c

• Dt2c performs better on average than St2c
• Best performance with Dt2c in 19 mixes

• Major differences when the mix includes a wider set of benchmarks with non-uniform shape in the L1
bandwidth

• Major benefit of St2c relative to Dt2c in mix 6
• Includes GemsFDTD benchmarks whose L1 bandwidth demand varies too fast

94

• Dt2c performs better on average than St2c
• Best performance with Dt2c in 19 mixes

• Major differences when the mix includes a wider set of benchmarks with non-uniform shape in the L1
bandwidth

• Major benefit of St2c relative to Dt2c in mix 6
• Includes GemsFDTD benchmarks whose L1 bandwidth demand varies too fast

PACT’13, Edinburgh, United Kingdom

Performance evaluation results
Speedup of the average IPC w.r.t. naïve t2c

95

• Higher speedups are achieved with balanced mixes
• As the number of benchmarks with extreme L1-bandwidth utilization decrease, the speedups tend to

decrease
• Interesting speedups around 5% are observed with 2 benchmarks with extreme L1-bandwidth

utilization
PACT’13, Edinburgh, United Kingdom

Performance evaluation results
Speedup of the average IPC w.r.t. naïve t2c

96

PACT’13, Edinburgh, United Kingdom

Performance evaluation results
Speedup of the average IPC w.r.t. naïve t2c

• Higher speedups are achieved with balanced mixes
• As the number of benchmarks with extreme L1-bandwidth utilization decrease, the speedups tend to

decrease
• Interesting speedups around 5% are observed with 2 benchmarks with extreme L1-bandwidth

utilization
97

PACT’13, Edinburgh, United Kingdom

Performance evaluation results
Speedup of the average IPC w.r.t. naïve t2c

• Higher speedups are achieved with balanced mixes
• As the number of benchmarks with extreme L1-bandwidth utilization decrease, the speedups tend to

decrease
• Interesting speedups around 5% are observed with 2 benchmarks with extreme L1-bandwidth

utilization
98

• Similar conclusions with the harmonic mean of weighted IPC metric

PACT’13, Edinburgh, United Kingdom

Performance evaluation results
Speedup of the harmonic mean of weighted IPC w.r.t. naïve t2c

99

• Similar conclusions with the harmonic mean of weighted IPC metric
• The speedups of the policies are slightly reduced relative to the naïve policy
• The differences between the Dt2c policy and St2c policy are increased

• The Dt2c policy is the best one, since it improves the other policies in performance and fairness

PACT’13, Edinburgh, United Kingdom

Performance evaluation results
Speedup of the harmonic mean of weighted IPC w.r.t. naïve t2c

100

• Similar plots for Linux and St2c during
the first 250 seconds

• Thread to core mapping
• h264ref and cactusADM
• bwaves and soplex

• Around second 250, Linux t2c policy
changes the t2c mapping
bwaves and h264ref share a core
• It achieves lower performance, but Linux

keeps using it until the end of the
execution

• Dt2c usually allocates
 bwaves and cactusADM on the same

core, what brings better performance
• h264ref runs with cactusADM in the

drops of bwaves, showing peaks in its L1
bandwidth

Performance evaluation results
Dynamic L1 bandwidth on mix 2

Li
nu

x
t2

c
Dt

2c
St

2c

101

• Similar plots for Linux and St2c during
the first 250 seconds

• Thread to core mapping
• h264ref and cactusADM
• bwaves and soplex

• Around second 250, Linux t2c policy
changes the t2c mapping
bwaves and h264ref share a core
• It achieves lower performance, but Linux

keeps using it until the end of the
execution

• Dt2c usually allocates
 bwaves and cactusADM on the same

core, what brings better performance
• h264ref runs with cactusADM in the

drops of bwaves, showing peaks in its L1
bandwidth

Performance evaluation results
Dynamic L1 bandwidth on mix 2

Li
nu

x
t2

c
Dt

2c
St

2c

102

• Similar plots for Linux and St2c during
the first 250 seconds

• Thread to core mapping
• h264ref and cactusADM
• bwaves and soplex

• Around second 250, Linux t2c policy
changes the t2c mapping

• bwaves and h264ref share a core
• It achieves lower performance, but Linux

keeps using it until the end of the
execution

• Dt2c usually allocates
 bwaves and cactusADM on the same

core, what brings better performance
• h264ref runs with cactusADM in the

drops of bwaves, showing peaks in its L1
bandwidth

Performance evaluation results
Dynamic L1 bandwidth on mix 2

Li
nu

x
t2

c
Dt

2c
St

2c

103

• Similar plots for Linux and St2c during
the first 250 seconds

• Thread to core mapping
• h264ref and cactusADM
• bwaves and soplex

• Around second 250, Linux t2c policy
changes the t2c mapping

• bwaves and h264ref share a core
• It achieves lower performance, but Linux

keeps using it until the end of the
execution

• Dt2c usually allocates
 bwaves and cactusADM on the same

core, what brings better performance
• h264ref runs with cactusADM in the

drops of bwaves, showing peaks in its L1
bandwidth

Performance evaluation results
Dynamic L1 bandwidth on mix 2

Li
nu

x
t2

c
Dt

2c
St

2c

104

• Similar plots for Linux and St2c during
the first 250 seconds

• Thread to core mapping
• h264ref and cactusADM
• bwaves and soplex

• Around second 250, Linux t2c policy
changes the t2c mapping

• bwaves and h264ref share a core
• It achieves lower performance, but Linux

keeps using it until the end of the
execution

• Dt2c usually allocates
• bwaves and cactusADM on the same

core, what brings better performance
• h264ref runs with cactusADM in the

drops of bwaves, showing peaks in its L1
bandwidth

Performance evaluation results
Dynamic L1 bandwidth on mix 2

Li
nu

x
t2

c
Dt

2c
St

2c

105

• Similar plots for Linux and St2c during
the first 250 seconds

• Thread to core mapping
• h264ref and cactusADM
• bwaves and soplex

• Around second 250, Linux t2c policy
changes the t2c mapping

• bwaves and h264ref share a core
• It achieves lower performance, but Linux

keeps using it until the end of the
execution

• Dt2c usually allocates
• bwaves and cactusADM on the same

core, what brings better performance
• h264ref runs with cactusADM in the

drops of bwaves, showing peaks in its L1
bandwidth

Performance evaluation results
Dynamic L1 bandwidth on mix 2

Li
nu

x
t2

c
Dt

2c
St

2c

106

• Similar plots for Linux and St2c during
the first 250 seconds

• Thread to core mapping
• h264ref and cactusADM
• bwaves and soplex

• Around second 250, Linux t2c policy
changes the t2c mapping

• bwaves and h264ref share a core
• It achieves lower performance, but Linux

keeps using it until the end of the
execution

• Dt2c usually allocates
• bwaves and cactusADM on the same

core, what brings better performance
• h264ref runs with cactusADM in the

drops of bwaves, showing peaks in its L1
bandwidth

Performance evaluation results
Dynamic L1 bandwidth on mix 2

Li
nu

x
t2

c
Dt

2c
St

2c

107

• Introduction
• Experimental platform
• Effects of L1 bandwidth on performance of SMT processors
• L1-bandwidth aware thread allocation policies
• Evaluation methodology
• Performance evaluation results
• Conclusions

PACT’13, Edinburgh, United Kingdom

Outline

108

• L1 bandwidth contention in current multithreaded CMPS has been addressed

• Our work has shown:
• Strong connection between L1 bandwidth and performance
• L1 bandwidth insufficient to satisfy the requirements of two threads
• Rises and drops in the L1 bandwidth (and performance) of a thread trigger opposite

behavior in the co-runner

• To leverage the finding, two thread allocation strategies have been proposed
• Goal: balancing the L1 bandwidth among all the L1 caches

• The proposed policies outperform the Linux thread allocation policy in both
performance and fairness

PACT’13, Edinburgh, United Kingdom

Conclusions

109

• L1 bandwidth contention in current multithreaded CMPS has been addressed

• Our work has shown:
• Strong connection between L1 bandwidth and performance
• L1 bandwidth insufficient to satisfy the requirements of two threads
• Rises and drops in the L1 bandwidth (and performance) of a thread trigger opposite

behavior in the co-runner

• To leverage the finding, two thread allocation strategies have been proposed
• Goal: balancing the L1 bandwidth among all the L1 caches

• The proposed policies outperform the Linux thread allocation policy in both
performance and fairness

PACT’13, Edinburgh, United Kingdom

Conclusions

110

• L1 bandwidth contention in current multithreaded CMPS has been addressed

• Our work has shown:
• Strong connection between L1 bandwidth and performance
• L1 bandwidth insufficient to satisfy the requirements of two threads
• Rises and drops in the L1 bandwidth (and performance) of a thread trigger opposite

behavior in the co-runner

• To leverage the finding, two thread allocation strategies have been proposed
• Goal: balancing the L1 bandwidth among all the L1 caches

• The proposed policies outperform the Linux thread allocation policy in both
performance and fairness

PACT’13, Edinburgh, United Kingdom

Conclusions

111

• L1 bandwidth contention in current multithreaded CMPS has been addressed

• Our work has shown:
• Strong connection between L1 bandwidth and performance
• L1 bandwidth insufficient to satisfy the requirements of two threads
• Rises and drops in the L1 bandwidth (and performance) of a thread trigger opposite

behavior in the co-runner

• To leverage the finding, two thread allocation strategies have been proposed
• Goal: balancing the L1 bandwidth among all the L1 caches

• The proposed policies outperform the Linux thread allocation policy in both
performance and fairness

PACT’13, Edinburgh, United Kingdom

Conclusions

112

• L1 bandwidth contention in current multithreaded CMPS has been addressed

• Our work has shown:
• Strong connection between L1 bandwidth and performance
• L1 bandwidth insufficient to satisfy the requirements of two threads
• Rises and drops in the L1 bandwidth (and performance) of a thread trigger opposite

behavior in the co-runner

• To leverage the finding, two thread allocation strategies have been proposed
• Goal: balancing the L1 bandwidth among all the L1 caches

• The proposed policies outperform the Linux thread allocation policy in both
performance and fairness

PACT’13, Edinburgh, United Kingdom

Conclusions

113

• L1 bandwidth contention in current multithreaded CMPS has been addressed

• Our work has shown:
• Strong connection between L1 bandwidth and performance
• L1 bandwidth insufficient to satisfy the requirements of two threads
• Rises and drops in the L1 bandwidth (and performance) of a thread trigger opposite

behavior in the co-runner

• To leverage the finding, two thread allocation strategies have been proposed
• Goal: balancing the L1 bandwidth among all the L1 caches

• The proposed policies outperform the Linux thread allocation policy in both
performance and fairness

PACT’13, Edinburgh, United Kingdom

Conclusions

114

9 September 2013
Edinburgh - UK

Thank you
&

¿Questions?

L1-Bandwidth Aware Thread Allocation in
Multicore SMT Processors

J. Feliu, J. Sahuquillo, S. Petit and J. Duato
Universitat Politècnica de València

9 September 2013
Edinburgh, United Kingdom

PACT’13, Edinburgh, United Kingdom

Backup slices

117

PACT’13, Edinburgh, United Kingdom

• Benchmarks are classified in four categories
 According to their L1 bandwidth

Fig 1. Average TRL1 for SPEC CPU 2006 benchmarksTable 1. Mix classification

Evaluation methodology
Benchmark classification

118

• A critical shared resource in any CMP is the memory bandwidth
• Main memory bandwidth
• LLC bandwidth
• Bandwidth at any shared cache

• Addressed with bandwidth-aware schedulers
• L1 caches are private to cores, but shared among threads in SMT

cores
L1 bandwidth contention may impact the performance

PACT’13, Edinburgh, United Kingdom

Introduction

119

	L1-Bandwidth Aware Thread Allocation in Multicore SMT Processors�
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	Número de diapositiva 5
	Número de diapositiva 6
	Número de diapositiva 7
	Introduction�
	Introduction�
	Introduction�
	Introduction�
	Introduction�
	Introduction�Contributions
	Introduction�Contributions
	Número de diapositiva 15
	Número de diapositiva 16
	Número de diapositiva 17
	Número de diapositiva 18
	Número de diapositiva 19
	Effects of L1 bandwidth on performance of SMT processors�Stand-alone execution – Average values
	Effects of L1 bandwidth on performance of SMT processors�Stand-alone execution – Average values
	Effects of L1 bandwidth on performance of SMT processors�Stand-alone execution – Average values
	Effects of L1 bandwidth on performance of SMT processors�Stand-alone execution – Average values
	Número de diapositiva 24
	Número de diapositiva 25
	Effects of L1 bandwidth on performance of SMT processors�Stand-alone execution – Dynamic values
	Effects of L1 bandwidth on performance of SMT processors�Stand-alone execution – Dynamic values
	Effects of L1 bandwidth on performance of SMT processors�Stand-alone execution – Dynamic values
	Effects of L1 bandwidth on performance of SMT processors�Stand-alone execution – Dynamic values
	Effects of L1 bandwidth on performance of SMT processors�Stand-alone execution – Dynamic values
	Effects of L1 bandwidth on performance of SMT processors�Stand-alone execution – Dynamic values
	Effects of L1 bandwidth on performance of SMT processors�Stand-alone execution – Dynamic values
	Effects of L1 bandwidth on performance of SMT processors�Stand-alone execution – Dynamic values
	Número de diapositiva 34
	Número de diapositiva 35
	Número de diapositiva 36
	Número de diapositiva 37
	Número de diapositiva 38
	Effects of L1 bandwidth on performance of SMT processors�Interferences between co-runners
	Effects of L1 bandwidth on performance of SMT processors�Interferences between co-runners
	Effects of L1 bandwidth on performance of SMT processors�Interferences between co-runners
	Effects of L1 bandwidth on performance of SMT processors�Interferences between co-runners
	Effects of L1 bandwidth on performance of SMT processors�Interferences between co-runners
	Effects of L1 bandwidth on performance of SMT processors�Interferences between co-runners
	Effects of L1 bandwidth on performance of SMT processors�Interferences between co-runners
	Effects of L1 bandwidth on performance of SMT processors�Interferences between co-runners
	Effects of L1 bandwidth on performance of SMT processors�Interferences between co-runners
	Effects of L1 bandwidth on performance of SMT processors�Interferences between co-runners
	Número de diapositiva 49
	Número de diapositiva 50
	Número de diapositiva 51
	Número de diapositiva 52
	Número de diapositiva 53
	Número de diapositiva 54
	Número de diapositiva 55
	Número de diapositiva 56
	Número de diapositiva 57
	Número de diapositiva 58
	Número de diapositiva 59
	Número de diapositiva 60
	Número de diapositiva 61
	Número de diapositiva 62
	Número de diapositiva 63
	Número de diapositiva 64
	Número de diapositiva 65
	Número de diapositiva 66
	Número de diapositiva 67
	Número de diapositiva 68
	Número de diapositiva 69
	Número de diapositiva 70
	Número de diapositiva 71
	Número de diapositiva 72
	Número de diapositiva 73
	Número de diapositiva 74
	Número de diapositiva 75
	Número de diapositiva 76
	Número de diapositiva 77
	Número de diapositiva 78
	Número de diapositiva 79
	Número de diapositiva 80
	Número de diapositiva 81
	Número de diapositiva 82
	Número de diapositiva 83
	Número de diapositiva 84
	Número de diapositiva 85
	Número de diapositiva 86
	Número de diapositiva 87
	Número de diapositiva 88
	Performance evaluation results�Speedup of the average IPC w.r.t. naïve t2c
	Performance evaluation results�Speedup of the average IPC w.r.t. naïve t2c
	Performance evaluation results�Speedup of the average IPC w.r.t. naïve t2c
	Performance evaluation results�Speedup of the average IPC w.r.t. naïve t2c
	Performance evaluation results�Speedup of the average IPC w.r.t. naïve t2c
	Performance evaluation results�Speedup of the average IPC w.r.t. naïve t2c
	Performance evaluation results�Speedup of the average IPC w.r.t. naïve t2c
	Performance evaluation results�Speedup of the average IPC w.r.t. naïve t2c
	Performance evaluation results�Speedup of the average IPC w.r.t. naïve t2c
	Performance evaluation results�Speedup of the average IPC w.r.t. naïve t2c
	Performance evaluation results�Speedup of the harmonic mean of weighted IPC w.r.t. naïve t2c
	Performance evaluation results�Speedup of the harmonic mean of weighted IPC w.r.t. naïve t2c
	Performance evaluation results�Dynamic L1 bandwidth on mix 2
	Performance evaluation results�Dynamic L1 bandwidth on mix 2
	Performance evaluation results�Dynamic L1 bandwidth on mix 2
	Performance evaluation results�Dynamic L1 bandwidth on mix 2
	Performance evaluation results�Dynamic L1 bandwidth on mix 2
	Performance evaluation results�Dynamic L1 bandwidth on mix 2
	Performance evaluation results�Dynamic L1 bandwidth on mix 2
	Número de diapositiva 108
	Número de diapositiva 109
	Número de diapositiva 110
	Número de diapositiva 111
	Número de diapositiva 112
	Número de diapositiva 113
	Número de diapositiva 114
	Número de diapositiva 115
	L1-Bandwidth Aware Thread Allocation in Multicore SMT Processors�
	Número de diapositiva 117
	Número de diapositiva 118
	Introduction�

