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• Simultaneous multithreading (SMT) processors exploit:
• Instruction-level parallelism
• Thread-level parallelism
• If the demand of a shared resource exceeds what it can provide

Performance can be damaged

PACT’13, Edinburgh, United Kingdom

Introduction

4



• Simultaneous multithreading (SMT) processors exploit:
• Instruction-level parallelism
• Thread-level parallelism

• Threads are continuously sharing some processor resources
• If the demand of a shared resource exceeds what it can provide

Performance can be damaged

PACT’13, Edinburgh, United Kingdom

Introduction

5



• Simultaneous multithreading (SMT) processors exploit:
• Instruction-level parallelism
• Thread-level parallelism

• Threads are continuously sharing some processor resources
• If the demand of a shared resource exceeds what it can provide
Performance can be damaged

PACT’13, Edinburgh, United Kingdom

Introduction

6



• Simultaneous multithreading (SMT) processors exploit:
• Instruction-level parallelism
• Thread-level parallelism

• Threads are continuously sharing some processor resources
• If the demand of a shared resource exceeds what it can provide
Performance can be damaged

• Smart thread to core mapping policies can help to alleviate the 
contention in the shared resources
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• A critical shared resource in any CMP is the 
memory bandwidth

• Main memory bandwidth
• LLC bandwidth
• Bandwidth at any shared cache

• Addressed with bandwidth-aware schedulers
• L1 caches are private to cores, and thus they have not 

been considered yet

• When the cores are SMT, the thread must share 
the L1 cache
L1 bandwidth contention may impact the 

performance
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• Analysis of the connection between the L1 bandwidth and
performance of the processes

• Strong connection between the L1 bandwidth consumption and performance

• Thread allocation strategies to deal with L1 bandwidth contention
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• Experiments carried out in a Intel Xeon E5645
• 6 dual-thread cores
• Private L1 (32 KB x 6) and L2 (256 KB x 6) caches
• Shared 12 MB LLC

• Linux with kernel 3.3.0
• Libpfm 4.3 is used to manage performance 

counters
• L1 requests, instructions and cycles for each 

running process are gathered dynamically
• SPEC CPU2006 benchmarks with reference 

inputs
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• Stand-alone execution
• Average 
 Average TRL1 and IPC in stand-alone execution

• Dynamic
 The process behavior can widely vary during the execution, so lets analyze the dynamic 

value of both metrics

• Concurrent execution
 Two threads running simultaneously on a given core share the L1 cache
 Their performance depend on the L1 bandwidth they achieve

 Competition for the L1 bandwidth will limit the performance
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Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Average values

L1 bandwidth – TR L1 Performance – IPC

• Certain correlation between both metrics
• Benchmarks with high TRL1 present high IPC
• Benchmarks with low TRL1 present low IPC

• Benchmarks with similar TRL1 (or IPC) can also show different TRL1 (or IPC)
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• Stand-alone execution
• Average 
Certain similarities appear among average values of L1 bandwidth and IPC, 

but there is no clear evidence about the connection between them
• Dynamic
 The process behavior can widely vary during the execution, so lets analyze the 

dynamic value of both metrics
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TRL1 and IPC evolution with time for mcf

• The plot presents
• L1 bandwidth
• IPC

• Strong connection between L1
bandwidth and IPC dynamically

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Dynamic values
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TRL1 and IPC evolution with time for bwaves

• The plot presents
• L1 bandwidth
• IPC

• Strong connection between L1
bandwidth and IPC dynamically

• Almost identical shape
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TRL1 and IPC evolution with time for cactusADM

• The plot presents
• L1 bandwidth
• IPC

• Strong connection between L1
bandwidth and IPC dynamically

• Almost identical shape
• Synchronized rises and drops with

similar magnitude
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TRL1 and IPC evolution with time for xalancbmk

• The plot presents
• L1 bandwidth
• IPC

• Strong connection between L1
bandwidth and IPC dynamically

• Almost identical shape
• Synchronized rises and drops with

similar magnitude
• Even small peaks in L1 bandwidth

trigger synchronized peaks in the
IPC
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TRL1 and IPC evolution with time for astar TRL1 and IPC evolution with time for bzip2
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TRL1 and IPC evolution with time for perlbench TRL1 and IPC evolution with time for milc

Effects of L1 bandwidth on performance of SMT processors
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TRL1 and IPC evolution with time for sjeng TRL1 and IPC evolution with time for povray

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Dynamic values
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TRL1 and IPC evolution with time for gcc TRL1 and IPC evolution with time for zeusMP

Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution – Dynamic values
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• Stand-alone execution
• Average 
Certain similarities appear among average values of L1 bandwidth and IPC, 

but there is no clear evidence about the connection between them
• Dynamic
Synchronized and correlated trend between the L1 bandwidth of a thread and its 

performance
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 Their performance depend on the L1 bandwidth they achieve
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TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

38



Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

PACT’13, Edinburgh, United Kingdom

TRL1 of bwaves and cactusADM running on the same core

TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

39



Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

PACT’13, Edinburgh, United Kingdom

TRL1 of bwaves and cactusADM running on the same core

TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• Bwaves maximum is around 1400 t/usec (2100 t/usec in
stand-alone execution)

• CactusADM maximum is around 800 t/usec (1300 t/usec in
standa-alone execution)
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TRL1 of bwaves and cactusADM running on the same core

TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• Bwaves maximum is around 1400 t/usec (2100 t/usec in
stand-alone execution)
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standa-alone execution)
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Effects of L1 bandwidth on performance of SMT processors
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TRL1 of bwaves and cactusADM running on the same core

TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

• Increasing trend of the L1 bandwidth of bwaves due to L1
bandwidth utilization decrease of cactusADM

• Peaks on the L1 bandwidth of cactusADM due to L1
bandwidth drops of bwaves
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TRL1 of bwaves and cactusADM running on the same core

TRL1 and IPC evolution with time for bwaves TRL1 and IPC evolution with time for cactusADM

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

• Increasing trend of the L1 bandwidth of bwaves due to L1
bandwidth utilization decrease of cactusADM

• Peaks on the L1 bandwidth of cactusADM due to L1
bandwidth drops of bwaves

Rise due to the co-runner drop

Implicit drop
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Interferences between co-runners

TRL1 of bzip2 and h264ref running on the same core
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Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

TRL1 of gamess and dealII running on the same core
TRL1 and IPC evolution with time for gamess TRL1 and IPC evolution with time for dealII

• The L1 bandwidth of the core cannot satisfy the
requirements of both threads

• The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

• The observations of the L1 bandwidth are applicable to
performance

IPC of gamess and dealII running on the same core 48



• Stand-alone execution
• Average 

Certain similarities appear among L1 bandwidth and IPC, but there is no clear evidence 
about the connection between them. 

• Dynamic
Synchronized and correlated trend between the L1 bandwidth of a thread and its 

performance.

• Concurrent execution
 Insufficient L1 bandwidth to satisfy the requirements of two processes.
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Certain similarities appear among L1 bandwidth and IPC, but there is no clear evidence 
about the connection between them. 

• Dynamic
Synchronized and correlated trend between the L1 bandwidth of a thread and its 

performance.

• Concurrent execution
 Insufficient L1 bandwidth to satisfy the requirements of two processes.
L1 bandwidth rises and drops on a the L1 bandwidth (or performance) of a process 

trigger the opposite behavior in the co-runner
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• We devise two policies
• Static thread allocation policy (St2c)
• Dynamic thread allocation policy (Dt2c)

• The goal of both policies is to balance the overall L1 bandwidth of the running 
processes among the processor cores

• The policies rely on the L1 bandwidth requirements of the processes to guide the 
thread allocation

• Differ in how L1 bandwidth is estimated

• The t2c policies can work as a step of a global scheduler
• No process selection performed in our policies
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• Threads are allocated to cores based on the average L1 bandwidth 
requirement of each process
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• Thread to core mappings only update when the running processes change
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• Threads are allocated to cores based on the average L1 bandwidth 
requirement of each process

• Requires a preliminary stand-alone execution of each process
• Thread to core mappings only update when the running processes change

• To balance L1 bandwidth
• Threads are sorted in increasing L1 bandwidth
• Reiteratively, the threads with maximum and minimum requirements are 

selected to share a given core
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• Major benefits
• Good estimation for benchmarks with uniform L1-bandwidth shape  

• 11 of 25 analyzed benchmarks
 Avoids interferences of co-runners in the L1 bandwidth estimations

• Major drawbacks
 Requires  a preliminary run of processes
 Bad L1 bandwidth estimation for processes with non-uniform shape
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• Major benefits
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• Major benefits
• Good estimation for benchmarks with uniform L1-bandwidth shape
• Avoids interferences of co-runners in the L1 bandwidth estimations

• Major drawbacks
• Requires a preliminary run of processes
• Poor L1 bandwidth estimation for processes with non-uniform shape

• 14 of the 25 analyzed benchmarks
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• Dt2c tackles both mentioned shortcomings of the St2c
• The L1 bandwidth requirements of each process is updated dynamically at 

run-time using performance counters
Does not require any preliminary information of the processes
 Captures the L1 bandwidth requirements of benchmarks with non-uniform shapes

• Balancing L1 bandwidth can be performed as stated in the St2c policy

• Thread to core mappings are updated dynamically
• As soon as the L1 bandwidth requirements change
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• Dt2c tackles both mentioned shortcoming of the St2c
• The L1 bandwidth requirements of each process is dynamically updated at 

run-time using performance counters
• Does not require any previous information of the processes
• Captures the L1 bandwidth requirements of benchmarks with non-uniform shapes

• Balancing L1 bandwidth can be performed as stated in the St2c policy
• L1 bandwidth updated every OS quantum
Thread to core mappings are updated after each OS quantum
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• Introduction
• Experimental platform
• Effects of L1 bandwidth on performance of SMT processors
• L1-bandwidth aware thread allocation policies
• Evaluation methodology
• Performance evaluation results
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• Four thread allocation policies are compared
• St2c
• Dt2c
• Naïve t2c

• Random, allowing unbalancing of L1 bandwidth among cores
• Linux t2c

• The affinity of all the threads is set to all the cores. Thus, Linux decides the thread
allocation

• All the policies are implemented in a user-level scheduler
• Sharing the main code, and any possible overhead
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• Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads

• The workloads run with half the number of cores than the number of benchmarks
• All the hardware threads are used

• Target number of instructions for each benchmarks
• Instructions required to run 200 seconds in stand-alone execution

• All the processes of the mix run until the last processes completes its target number
of instructions

• Performance metrics of each process are obtained at the point it completes its target number
of instructions

• We compare the same part of the execution of each benchmarks across different runs of the
mix

• The contribution
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• We compare the same part of the execution of each benchmarks across different runs of the
mix

• The contribution of all the processes to the mix metrics is equalized

PACT’13, Edinburgh, United Kingdom

Evaluation methodology

80



• Average IPC
• Plain metric to measure throughput improvements
• Can favor unfair scheduling 

• Threads with higher IPC could receive higher weight to improve the average IPC
These situations are avoided in our methodology, because the set of running processes 

is fixed and kept the entire execution

• Harmonic mean of weighted IPC
• Encapsulates fairness additionally to performance

• The harmonic mean tends to be lower if any thread presents lower speedup than the 
others
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• These situations are avoided in our methodology, because the set of running processes 

is fixed and kept the entire execution

• Harmonic mean of weighted IPC
• Encapsulates fairness additionally to performance

• The harmonic mean tends to be low if any thread presents much lower speedup than the 
others
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• The higher the bandwidth requirements
• The higher L1 bandwidth contention can induce
• The higher performance degradation can suffer
The more critical its allocation is

• Mixes are classified according to their number of benchmarks with 
extreme L1 bandwidth requirements

• Balanced mixes: half of the benchmarks with extreme L1 bandwidth 
• Non-balanced mixes: fewer number of benchmarks with extreme L1 

bandwidth requirements than with lower requirements
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• The higher the bandwidth requirements
• The higher L1 bandwidth contention can induce
• The higher performance degradation can suffer

The more critical its allocation is

• Mixes are classified according to their number of benchmarks with 
extreme L1 bandwidth requirements (more than 1700 trans/usec)

• Balanced mixes: half of the benchmarks with extreme L1 bandwidth 
• Non-balanced mixes: fewer number of benchmarks with extreme L1 

bandwidth requirements than with lower requirements
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• Introduction
• Experimental platform
• Effects of L1 bandwidth on performance of SMT processors
• L1-bandwidth aware thread allocation policies
• Evaluation methodology
• Performance evaluation results
• Conclusions
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• Average speedups of 20 executions of each mix and 95% confidence intervals
• Balanced mixes include half of the mixes with extreme L1 bandwidth
• Non balanced mixes nomenclature

 XXE refers to a mix with X extreme L1 bandwidth benchmarks
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• Speedups around or above 6% 
• 14 mixes with the Dt2c
• 10 mixes with the St2c
• 3 mixes with the Linux t2c
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• Speedups below 2% 
• 5 mixes with the Linux t2c
• 1 mix with the St2c
• 1 mix with the Dt2c
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Speedup of the average IPC w.r.t. naïve t2c

• Dt2c performs better on average than St2c
• Best performance with Dt2c in 19 mixes

• Major differences when the mix includes a wider set of benchmarks with non-uniform shape in the L1 
bandwidth

• Major benefit of St2c relative to Dt2c in mix 6
• Includes GemsFDTD benchmarks whose L1 bandwidth demand varies too fast
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• Higher speedups are achieved with balanced  mixes
• As the number of benchmarks with extreme L1-bandwidth utilization decrease, the speedups tend to 

decrease
• Interesting speedups around 5% are observed with 2 benchmarks with extreme L1-bandwidth 

utilization
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• Similar conclusions with the harmonic mean of weighted IPC metric
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• Similar conclusions with the harmonic mean of weighted IPC metric
• The speedups of the policies are slightly reduced relative to the naïve policy
• The differences between the Dt2c policy and St2c policy are increased

• The Dt2c policy is the best one, since it improves the other policies in performance and fairness
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• Similar plots for Linux and St2c during 
the first 250 seconds

• Thread to core mapping
• h264ref and cactusADM
• bwaves and soplex

• Around second 250, Linux t2c policy 
changes the t2c mapping
bwaves and h264ref share a core
• It achieves lower performance, but Linux 

keeps using it until the end of the 
execution

• Dt2c usually allocates 
 bwaves and cactusADM on the same 

core, what brings better performance
• h264ref runs with cactusADM in the 

drops of bwaves, showing peaks in its L1 
bandwidth

Performance evaluation results
Dynamic L1 bandwidth on mix 2
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• Introduction
• Experimental platform
• Effects of L1 bandwidth on performance of SMT processors
• L1-bandwidth aware thread allocation policies
• Evaluation methodology
• Performance evaluation results
• Conclusions
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• L1 bandwidth contention in current multithreaded CMPS has been addressed

• Our work has shown:
• Strong connection between L1 bandwidth and performance
• L1 bandwidth insufficient to satisfy the requirements of two threads
• Rises and drops in the L1 bandwidth (and performance) of a thread trigger opposite

behavior in the co-runner

• To leverage the finding, two thread allocation strategies have been proposed
• Goal: balancing the L1 bandwidth among all the L1 caches

• The proposed policies outperform the Linux thread allocation policy in both
performance and fairness
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• Benchmarks are classified in four categories
 According to their L1 bandwidth 

Fig 1. Average TRL1 for SPEC CPU 2006 benchmarksTable 1. Mix classification

Evaluation methodology
Benchmark classification
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• A critical shared resource in any CMP is the memory bandwidth
• Main memory bandwidth
• LLC bandwidth
• Bandwidth at any shared cache

• Addressed with bandwidth-aware schedulers
• L1 caches are private to cores, but shared among threads in SMT

cores
L1 bandwidth contention may impact the performance
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