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Introduction

e Simultaneous multithreading (SMT) processors exploit:
* |nstruction-level parallelism
e Thread-level parallelism
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Introduction

e Simultaneous multithreading (SMT) processors exploit:

* |nstruction-level parallelism
e Thread-level parallelism

* Threads are continuously sharing some processor resources

 |f the demand of a shared resource exceeds what it can provide
- Performance can be damaged

 Smart thread to core mapping policies can help to alleviate the
contention in the shared resources

Functional and
arithmetic units

Register file thl
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Introduction

A critical shared resource in any CMP is the
memory bandwidth

e Main memory bandwidth
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Introduction

A critical shared resource in any CMP is the
memory bandwidth
 Main memory bandwidth

e LLC bandwidth [ Main memory J
e Bandwidth at any shared cache

[ Last level cache ]

e Addressed with bandwidth-aware schedulers

e L1 caches are private to cores, and thus they have not

(2 ) (2 )
been considered yet
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Introduction

A critical shared resource in any CMP is the
memory bandwidth

 Main memory bandwidth
e LLC bandwidth [ Main memory J
e Bandwidth at any shared cache

[ Last level cache ]

* Addressed with bandwidth-aware schedulers | | |

e L1 caches are private to cores, and thus they have not ( L2 ) ( L2 )
been considered yet

* When the cores are SMT, the thread must share

the L1 cache
- L1 bandwidth contention may impact the
performance
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Introduction

Contributions

* Analysis of the connection between the L1 bandwidth and
performance of the processes

e Strong connection between the L1 bandwidth consumption and performance
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Introduction

Contributions

* Analysis of the connection between the L1 bandwidth and
performance of the processes

e Strong connection between the L1 bandwidth consumption and performance

e Thread allocation strategies to deal with L1 bandwidth contention
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Experimental platform

e Experiments carried out in a Intel Xeon E5645
e 6 dual-thread cores
e Private L1 (32 KB x 6) and L2 (256 KB x 6) caches [ Main memory }
e Shared 12 MB LLC

[ Last Ievel cache ]

L2)(L2>(L2)[L2)(L2)(L2
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Experimental platform

e Experiments carried out in a Intel Xeon E5645

e 6 dual-thread cores
e Private L1 (32 KB x 6) and L2 (256 KB x 6) caches
e Shared 12 MB LLC

e Linux with kernel 3.3.0

e Libpfm 4.3 is used to manage performance
counters

e L1 requests, instructions and cycles for each
running process are gathered dynamically

e SPEC CPU2006 benchmarks with reference
inputs

PACT’13, Edinburgh, United Kingdom
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» Effects of L1 bandwidth on performance of SMT processors
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Effects of L1 bandwidth on performance of SMT processors

e Stand-alone execution

* Average
= Average TR ; and IPC in stand-alone execution
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Performance — IPC
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Effects of L1 bandwidth on performance of SMT processors

Stand-alone execution — Average values
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e Benchmarks with similar TR, (or IPC) can also show different TR , (or IPC)

PACT’13, Edinburgh, United Kingdom

23



Effects of L1 bandwidth on performance of SMT processors

e Stand-alone execution

* Average

» Certain similarities appear among average values of L1 bandwidth and IPC,
but there is no clear evidence about the connection between them
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Effects of L1 bandwidth on performance of SMT processors

e Stand-alone execution

* Average

» Certain similarities appear among average values of L1 bandwidth and IPC,
but there is no clear evidence about the connection between them

* Dynamic

= The process behavior can widely vary during the execution, so lets analyze the
dynamic value of both metrics
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Effects of L1 bandwidth on performance of SMT processors

Stand-alone execution — Dynamic values
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e The plot presents

* |PC

e Strong connection between L1
bandwidth and IPC dynamically
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Effects of L1 bandwidth on performance of SMT processors

Stand-alone execution — Dynamic values
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e The plot presents
e L1 bandwidth
e |IPC

e Strong connection between L1
bandwidth and IPC dynamically
* Almost identical shape
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Effects of L1 bandwidth on performance of SMT processors

Stand-alone execution — Dynamic values
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e The plot presents

* |PC

e Strong connection between L1
bandwidth and IPC dynamically
* Almost identical shape

e Synchronized rises and drops with
similar magnitude
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Effects of L1 bandwidth on performance of SMT processors

Stand-alone execution — Dynamic values
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e The plot presents

* |PC

e Strong connection between L1
bandwidth and IPC dynamically
* Almost identical shape

e Synchronized rises and drops with
similar magnitude

e Even small peaks in L1 bandwidth
trigger synchronized peaks in the
IPC
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Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution — Dynamic values
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Effects of L1 bandwidth on performance of SMT processors
Stand-alone execution — Dynamic values
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Effects of L1 bandwidth on performance of SMT processors

Stand-alone execution — Dynamic values
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Effects of L1 bandwidth on performance of SMT processors

Stand-alone execution — Dynamic values
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Effects of L1 bandwidth on performance of SMT processors

e Stand-alone execution

* Average

» Certain similarities appear among average values of L1 bandwidth and IPC,
but there is no clear evidence about the connection between them

* Dynamic

» Synchronized and correlated trend between the L1 bandwidth of a thread and its
performance
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Effects of L1 bandwidth on performance of SMT processors

e Stand-alone execution

* Average

» Certain similarities appear among average values of L1 bandwidth and IPC,
but there is no clear evidence about the connection between them

* Dynamic

» Synchronized and correlated trend between the L1 bandwidth of a thread and its
performance

e Concurrent execution
= Two threads running simultaneously on a given core share the L1 cache
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Effects of L1 bandwidth on performance of SMT processors

e Stand-alone execution

* Average

» Certain similarities appear among average values of L1 bandwidth and IPC,
but there is no clear evidence about the connection between them

* Dynamic
» Synchronized and correlated trend between the L1 bandwidth of a thread and its
performance
* Concurrent execution
= Two threads running simultaneously on a given core share the L1 cache
" Their performance depend on the L1 bandwidth they achieve
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Effects of L1 bandwidth on performance of SMT processors

e Stand-alone execution

* Average

» Certain similarities appear among average values of L1 bandwidth and IPC,
but there is no clear evidence about the connection between them

* Dynamic
» Synchronized and correlated trend between the L1 bandwidth of a thread and its
performance
* Concurrent execution
= Two threads running simultaneously on a given core share the L1 cache

" Their performance depend on the L1 bandwidth they achieve
= Competition for the L1 bandwidth will limit the performance

PACT’13, Edinburgh, United Kingdom
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Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners
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Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners
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Effects of L1 bandwidth on performance of SMT processors

Interferences between co-runners
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Effects of L1 bandwidth on performance of SMT processors

Interferences between co-runners
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* Bwaves maximum is around 1400 t/usec (2100 t/usec in

stand-alone execution)
e CactusADM maximum is around 800 t/usec (1300 t/usec in

standa-alone execution)

TR, of bwaves and cactusADM running on the same core
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Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners

——bwaves ——cactusADM -
1400 J '-Iﬁhl TR_LL —IPC ==
imjﬂ ﬂ! 'y ¥ 2300 |- Al ——IPC 23 2300 | oo TR.LL — PC s 23
2000 . lul e Ll BODD bt b et S e e B b Liagy
‘61200 ] Wl M Y ---WM- 1 o -rr---_ = i '81700 pnfe gy y g g oo f 4 ko4 g B 4 4R 47 '81700 R R e e e s e A U
T ' S S
vi #1400 140 $1400 F 140
>1000 e < ‘ | s & e
Y <1100 M| 1.1 S1100
E 800 & 800 | 08 800
%. 500 18 % B N -4.4- [ O WS AN DU NN BT FUUEN TRV NRGN YOS NS POV e R | R GS 500 of cimisiminimaiaian e ]
€ 6500 - . I 200 —_— 0.2 200 Mebidatlotilbibs il LU
= 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
[ | Time (s} Time (s}
400 - N | J ------ J ----- . -r L 2 TR, and IPC evolution with time for bwaves TR, and IPC evolution with time for cactusADM
200 T | | .
20 40 60 80 100 120 e The L1 bandwidth of the core cannot satisfy the

Time (s)

_ requirements of both threads
TR, of bwaves and cactusADM running on the same core

e The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner
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Effects of L1 bandwidth on performance of SMT processors

Interferences between co-runners
Rise due to the co-runner drop
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requirements of both threads

e The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner
* Increasing trend of the L1 bandwidth of bwaves due to L1
bandwidth utilization decrease of cactusADM
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Effects of L1 bandwidth on performance of SMT processors
Interferences between co-runners
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e The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner
* Increasing trend of the L1 bandwidth of bwaves due to L1

bandwidth utilization decrease of cactusADM
e Peaks on the L1 bandwidth of cactusADM due to L1

bandwidth drops of bwaves
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Effects of L1 bandwidth on performance of SMT processors

Interferences between co-runners
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Effects of L1 bandwidth on performance of SMT processors

Interferences between co-runners
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The L1 bandwidth of the core cannot satisfy the
requirements of both threads

The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

The observations of the L1 bandwidth are applicable to
performance
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Effects of L1 bandwidth on performance of SMT processors

Interferences between co-runners
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e The L1 bandwidth of the core cannot satisfy the
requirements of both threads

 The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

e The observations of the L1 bandwidth are applicable to
performance
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Effects of L1 bandwidth on performance of SMT processors

Interferences between co-runners
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e The L1 bandwidth of the core cannot satisfy the
requirements of both threads

 The L1 bandwidth utilization of a thread depends on the L1
bandwidth utilization of the co-runner

e The observations of the L1 bandwidth are applicable to
performance
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Effects of L1 bandwidth on performance of SMT processors

e Stand-alone execution

* Average

» Certain similarities appear among L1 bandwidth and IPC, but there is no clear evidence
about the connection between them.

* Dynamic

» Synchronized and correlated trend between the L1 bandwidth of a thread and its
performance.

e Concurrent execution
» Insufficient L1 bandwidth to satisfy the requirements of two processes.

PACT’13, Edinburgh, United Kingdom
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Effects of L1 bandwidth on performance of SMT processors

e Stand-alone execution

* Average

» Certain similarities appear among L1 bandwidth and IPC, but there is no clear evidence
about the connection between them.

* Dynamic

» Synchronized and correlated trend between the L1 bandwidth of a thread and its
performance.

* Concurrent execution

» Insufficient L1 bandwidth to satisfy the requirements of two processes.

» L1 bandwidth rises and drops on a the L1 bandwidth (or performance) of a process
trigger the opposite behavior in the co-runner

PACT’13, Edinburgh, United Kingdom 50



Ovtline

e L1-bandwidth aware thread allocation policies
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L1 bandwidth aware thread allocation policies

 We devise two policies
 Static thread allocation policy (St2c)
e Dynamic thread allocation policy (Dt2c)

PACT’13, Edinburgh, United Kingdom
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L1 bandwidth aware thread allocation policies

 We devise two policies
 Static thread allocation policy (St2c)
e Dynamic thread allocation policy (Dt2c)

e The goal of both policies is to balance the overall L1 bandwidth of the running
processes among the processor cores
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L1 bandwidth aware thread allocation policies

 We devise two policies
 Static thread allocation policy (St2c)
e Dynamic thread allocation policy (Dt2c)

* The goal of both policies is to balance the overall L1 bandwidth of the running
processes among the processor cores

* The policies rely on the L1 bandwidth requirements of the processes to guide the
thread allocation

e Differ in how L1 bandwidth is estimated
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L1 bandwidth aware thread allocation policies

 We devise two policies
 Static thread allocation policy (St2c)
e Dynamic thread allocation policy (Dt2c)

e The goal of both policies is to balance the overall L1 bandwidth of the running
processes among the processor cores

* The policies rely on the L1 bandwidth requirements of the processes to guide the
thread allocation

e Differ in how L1 bandwidth is estimated

 The t2c policies can work as a step of a global scheduler
* No process selection performed in our policies

PACT’13, Edinburgh, United Kingdom
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L1 bandwidth aware thread allocation policies

St2c: Static thread to core allocation policy

* Threads are allocated to cores based on the average L1 bandwidth
requirement of each process

PACT’13, Edinburgh, United Kingdom
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L1 bandwidth aware thread allocation policies

St2c: Static thread to core allocation policy

* Threads are allocated to cores based on the average L1 bandwidth
requirement of each process

e Requires a preliminary stand-alone execution of each process
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L1 bandwidth aware thread allocation policies

St2c: Static thread to core allocation policy

* Threads are allocated to cores based on the average L1 bandwidth
requirement of each process

e Requires a preliminary stand-alone execution of each process
 Thread to core mappings only update when the running processes change
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L1 bandwidth aware thread allocation policies

St2c: Static thread to core allocation policy

* Threads are allocated to cores based on the average L1 bandwidth
requirement of each process

e Requires a preliminary stand-alone execution of each process
e Thread to core mappings only update when the running processes change

 To balance L1 bandwidth

e Threads are sorted in increasing L1 bandwidth

e Reiteratively, the threads with maximum and minimum requirements are
selected to share a given core

PACT’13, Edinburgh, United Kingdom
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L1 bandwidth aware thread allocation policies

St2c: Static thread to core allocation policy

* Major benefits

e Good estimation for benchmarks with uniform L1-bandwidth shape L
e 11 of 25 analyzed benchmarks

PACT’13, Edinburgh, United Kingdom
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L1 bandwidth aware thread allocation policies

St2c: Static thread to core allocation policy

* Major benefits
e Good estimation for benchmarks with uniform L1-bandwidth shape

* Avoids interferences of co-runners in the L1 bandwidth estimations
e L1 bandwidth measured in stand-alone execution

PACT’13, Edinburgh, United Kingdom
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L1 bandwidth aware thread allocation policies

St2c: Static thread to core allocation policy

* Major benefits
e Good estimation for benchmarks with uniform L1-bandwidth shape
e Avoids interferences of co-runners in the L1 bandwidth estimations

 Major drawbacks

* Requires a preliminary run of processes =<
e To estimate the L1 bandwidth

PACT’13, Edinburgh, United Kingdom
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L1 bandwidth aware thread allocation policies

St2c: Static thread to core allocation policy

* Major benefits
e Good estimation for benchmarks with uniform L1-bandwidth shape
e Avoids interferences of co-runners in the L1 bandwidth estimations

 Major drawbacks
* Requires a preliminary run of processes =

 Poor L1 bandwidth estimation for processes with non-uniform shape
e 14 of the 25 analyzed benchmarks

PACT’13, Edinburgh, United Kingdom
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L1 bandwidth aware thread allocation policies

Dt2c: Dynamic thread to core allocation policy

e Dt2c tackles both mentioned shortcomings of the St2c

PACT’13, Edinburgh, United Kingdom
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L1 bandwidth aware thread allocation policies

Dt2c: Dynamic thread to core allocation policy
e Dt2c tackles both mentioned shortcoming of the St2c

 The L1 bandwidth requirements of each process is dynamically updated at
run-time using performance counters
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L1 bandwidth aware thread allocation policies

Dt2c: Dynamic thread to core allocation policy

e Dt2c tackles both mentioned shortcoming of the St2c

 The L1 bandwidth requirements of each process is dynamically updated at
run-time using performance counters N

e Does not require any previous information of the processes =~
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L1 bandwidth aware thread allocation policies
Dt2c: Dynamic thread to core allocation policy

e Dt2c tackles both mentioned shortcoming of the St2c

 The L1 bandwidth requirements of each process is dynamically updated at

run-time using performance counters
e Does not require any previous information of the processes <

0

e Captures the L1 bandwidth requirements of benchmarks with non-uniform shapes (=~
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L1 bandwidth aware thread allocation policies
Dt2c: Dynamic thread to core allocation policy

e Dt2c tackles both mentioned shortcoming of the St2c

 The L1 bandwidth requirements of each process is dynamically updated at
run-time using performance counters

e Does not require any previous information of the processes
e Captures the L1 bandwidth requirements of benchmarks with non-uniform shapes

e Balancing L1 bandwidth can be performed as stated in the St2c policy

e L1 bandwidth updated every OS quantum
—Thread to core mappings are updated after each OS quantum

PACT’13, Edinburgh, United Kingdom 68



Ovutline

e Evaluation methodology
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Evaluation methodology

e Four thread allocation policies are compared
» St2c
* Dt2c
* Naive t2c

e Linux t2c
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Evaluation methodology

e Four thread allocation policies are compared
e St2c
e Dt2c
* Naive t2c
e Random, allowing unbalancing of L1 bandwidth among cores
* Linux t2c
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Evaluation methodology

e Four thread allocation policies are compared
» St2c
* Dt2c
* Naive t2c
e Random, allowing unbalancing of L1 bandwidth among cores

e Linux t2c

e The affinity of all the threads is set to all the cores. Thus, Linux decides the thread
allocation
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Evaluation methodology

e Four thread allocation policies are compared
» St2c
* Dt2c
* Naive t2c
e Random, allowing unbalancing of L1 bandwidth among cores

e Linux t2c

e The affinity of all the threads is set to all the cores. Thus, Linux decides the thread
allocation

e All the policies are implemented in a user-level scheduler
e Sharing the main code, and any possible overhead

PACT’13, Edinburgh, United Kingdom
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Evaluation methodology

 Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads

PACT’13, Edinburgh, United Kingdom
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Evaluation methodology

e Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads

e The workloads run with half the number of cores than the number of benchmarks
e All the hardware threads are used
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Evaluation methodology

 Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads
e The workloads run with half the number of cores than the number of benchmarks
e All the hardware threads are used

e Target number of instructions for each benchmarks
* Instructions required to run 200 seconds in stand-alone execution
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Evaluation methodology

 Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads
e The workloads run with half the number of cores than the number of benchmarks
e All the hardware threads are used

e Target number of instructions for each benchmarks
* Instructions required to run 200 seconds in stand-alone execution

e All the processes of the mix run until the last processes completes its target number
of instructions
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Evaluation methodology

 Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads
 The workloads run with half the number of cores than the number of benchmarks
e All the hardware threads are used
e Target number of instructions for each benchmarks
* Instructions required to run 200 seconds in stand-alone execution

e All the processes of the mix run until the last processes completes its target number
of instructions

 The performance metric (IPC) of each process is obtained at the point it completes its target
number of instructions
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Evaluation methodology

 Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads

e The workloads run with half the number of cores than the number of benchmarks
* All the hardware threads are used

e Target number of instructions for each benchmarks
* Instructions required to run 200 seconds in stand-alone execution

e All the processes of the mix run until the last processes completes its target number
of instructions

* The performance metric (IPC) of each process is obtained at the point it completes its target
number of instructions

* We compare the same part of the execution of each benchmarks across different runs of the
mix
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Evaluation methodology

 Focuses on avoiding performance differences to be caused by early
finalization of the execution of some threads

e The workloads run with half the number of cores than the number of benchmarks
* All the hardware threads are used

e Target number of instructions for each benchmarks
* Instructions required to run 200 seconds in stand-alone execution

e All the processes of the mix run until the last processes completes its target number
of instructions

* The performance metric (IPC) of each process is obtained at the point it completes its target
number of instructions

* We compare the same part of the execution of each benchmarks across different runs of the
mix

e The contribution of all the processes to the mix metrics is equalized

PACT’13, Edinburgh, United Kingdom
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Evaluation methodology

Metrics

* Average IPC

e Plain metric to measure throughput improvements

PACT’13, Edinburgh, United Kingdom
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Evaluation methodology

Metrics

* Average IPC
e Plain metric to measure throughput improvements

-~

e Can favor unfair scheduling 2
e Threads with higher IPC could receive higher weight to improve the average IPC
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Evaluation methodology
Metrics

* Average IPC
e Plain metric to measure throughput improvements

e Can favor unfair scheduling
e Threads with higher IPC could receive higher weight to improve the average IPC

* These situations are avoided in our methodology, because the set of running processes
is fixed and kept the entire execution 3¢
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Evaluation methodology
Metrics

* Average IPC
e Plain metric to measure throughput improvements

e Can favor unfair scheduling
e Threads with higher IPC could receive higher weight to improve the average IPC

* These situations are avoided in our methodology, because the set of running processes
is fixed and kept the entire execution

* Harmonic mean of weighted IPC

e Encapsulates fairness additionally to performance

e The harmonic mean tends to be low if any thread presents much lower speedup than the
others

PACT’13, Edinburgh, United Kingdom
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Evaluation methodology

Mix design

* The higher the bandwidth requirements
* The higher L1 bandwidth contention can induce
* The higher performance degradation can suffer

PACT’13, Edinburgh, United Kingdom

85



Evaluation methodology

Mix design

* The higher the bandwidth requirements
* The higher L1 bandwidth contention can induce
* The higher performance degradation can suffer

—>The more critical its allocation is
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Evaluation methodology

Mix design

* The higher the bandwidth requirements
 The higher L1 bandwidth contention can induce
* The higher performance degradation can suffer

—>The more critical its allocation is

* Mixes are classified according to their number of benchmarks with
extreme L1 bandwidth requirements (more than 1700 trans/usec)
e Balanced mixes: half of the benchmarks with extreme L1 bandwidth

* Non-balanced mixes: fewer number of benchmarks with extreme L1
bandwidth requirements than with lower requirements

PACT’13, Edinburgh, United Kingdom
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Ovutline

 Performance evaluation results
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Performance evaluation results

Speedup of the average IPC w.r.t. naive t2c
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10
R G e e e N [ ey |
2
5 61
=
2 4 - TH- " N N——
L
Q.
A 5 | NN | M
0 e _ ) J A
- 3 4 5‘6 718]9110/1112/13|14]1516 17‘18 1920|2122 |23 (24
Balanced IE‘OE Balanced |2E |1E OE | Balanced 3E2E‘1E Balanced 4E 3E 2E
4 threads 6 threads 8 threads | 12 threads

Workload

e Average speedups of 20 executions of each mix and 95% confidence intervals
e Balanced mixes include half of the mixes with extreme L1 bandwidth
 Non balanced mixes nomenclature

o XE refers to a mix with X extreme L1 bandwidth benchmarks
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Performance evaluation results

Speedup of the average IPC w.r.t. naive t2c

Speedup (%)
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e Speedups around or above 6%
e 14 mixes with the Dt2c
e 10 mixes with the St2c
3 mixes with the Linux t2c
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Performance evaluation results

Speedup of the average IPC w.r.t. naive t2c

OLinux t2c @ Static t2c
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e Speedups below 2%
* 5 mixes with the Linux t2c

1 mix with the St2c
1 mix with the Dt2c
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Performance evaluation results

Speedup of the average IPC w.r.t. naive t2c
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e Dt2c performs better on average than St2c
e Best performance with Dt2c in 19 mixes
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Performance evaluation results
Speedup of the average IPC w.r.t. naive t2c
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e Dt2c performs better on average than St2c
e Best performance with Dt2c in 19 mixes
 Major differences when the mix includes a wider set of benchmarks with non-uniform shape in the L1
bandwidth
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Performance evaluation results
Speedup of the average IPC w.r.t. naive t2c
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Workload

e Dt2c performs better on average than St2c
e Best performance with Dt2c in 19 mixes
 Major differences when the mix includes a wider set of benchmarks with non-uniform shape in the L1
bandwidth

e Major benefit of St2c relative to Dt2c in mix 6
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Performance evaluation results
Speedup of the average IPC w.r.t. naive t2c T ———

10 I:!Linuthc M Static t2c lDynamithc | i:u
= 8 LN RN A S N e AT s i ........... ,o:g
S'? 0.5
= 6 Il B0 N B 75 100 125 150 175 2000-2
Fqg) 4 . Time (s)

Q
o
MMFIF' FIJ ﬂ IMM

O ; N/

1‘234 678‘91011121314‘15161718192021222324
Balanced |1E OE Balanced 2E | 1E OE Balanced 3E 2E|1E| Balanced |4E|3E|2E
4 threads _ 6 threads 8 threads 12 threads

Workload

e Dt2c performs better on average than St2c
e Best performance with Dt2c in 19 mixes

 Major differences when the mix includes a wider set of benchmarks with non-uniform shape in the L1
bandwidth

e Major benefit of St2c relative to Dt2c in mix 6
* Includes GemsFDTD benchmarks whose L1 bandwidth demand varies too fast
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Performance evaluation results

Speedup of the average IPC w.r.t. naive t2c
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Performance evaluation results
Speedup of the average IPC w.r.t. naive t2c

10 DLinuthc @ Statict2c W Dynamict2c
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Workload

e Higher speedups are achieved with balanced mixes
e Asthe number of benchmarks with extreme L1-bandwidth utilization decrease, the speedups tend to
decrease
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Performance evaluation results
Speedup of the average IPC w.r.t. naive t2c
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Workload

e Higher speedups are achieved with balanced mixes
e Asthe number of benchmarks with extreme L1-bandwidth utilization decrease, the speedups tend to
decrease
e Interesting speedups around 5% are observed with 2 benchmarks with extreme L1-bandwidth
utilization
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Performance evaluation results

Speedup of the harmonic mean of weighted IPC w.r.t. naive t2c

Olinux t2c @ Statict2c  ®W Dynamic t2c
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Workload

e Similar conclusions with the harmonic mean of weighted IPC metric
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Performance evaluation results
Speedup of the harmonic mean of weighted IPC w.r.t. naive t2c

Olinux t2c @ Statict2c  ®W Dynamic t2c

Speedup (%)
-

19/120/21(22(23(24
Balanced 2E|1E|0E| Balanced 3E Balanced |4E 3E 2E

4 threads 6 threads 8 threads 12 threads
Workload

e Similar conclusions with the harmonic mean of weighted IPC metric
 The speedups of the policies are slightly reduced relative to the naive policy
e The differences between the Dt2c policy and St2c policy are increased
* The Dt2c policy is the best one, since it improves the other policies in performance and fairness
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Linux t2c
TR |, (trans/usec)

St2c
TR |, (trans/usec)

Dt2c
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Performance evaluation results

Dynamic L1 bandwidth on mix 2
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Linux t2c
TR |, (trans/usec)

St2c
TR, (trans/usec)

Dt2c
TR |, (trans/usec)

Performance evaluation results

Dynamic L1 bandwidth on mix 2
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 Thread to core mapping
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e Around second 250, Linux t2c policy
changes the t2c mapping

e bwaves and h264ref share a core
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e Similar plots for Linux and St2c during
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 Thread to core mapping
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e Around second 250, Linux t2c policy
changes the t2c mapping

e bwaves and h264ref share a core

e |t achieves lower performance, but Linux
keeps using it until the end of the
execution
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Similar plots for Linux and St2c during
the first 250 seconds

Thread to core mapping
e h264ref and cactusADM
* bwaves and soplex

Around second 250, Linux t2c policy
changes the t2c mapping

e bwaves and h264ref share a core

e |t achieves lower performance, but Linux
keeps using it until the end of the
execution

Dt2c usually allocates

e pwaves and cactusADM on the same
core
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Similar plots for Linux and St2c during
the first 250 seconds

Thread to core mapping
e h264ref and cactusADM
* bwaves and soplex

Around second 250, Linux t2c policy
changes the t2c mapping
e bwaves and h264ref share a core

e |t achieves lower performance, but Linux
keeps using it until the end of the
execution

Dt2c usually allocates

* bwaves and cactusADM on the same
core, what brings better performance

e h264ref runs with cactusADM in the
drops of bwaves, showing peaks in its L1
bandwidth
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Ovutline

e Conclusions
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Conclusions

e L1 bandwidth contention in current multithreaded CMPS has been addressed
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Conclusions

e Our work has shown:
e Strong connection between L1 bandwidth and performance
e L1 bandwidth insufficient to satisfy the requirements of two threads

e Rises and drops in the L1 bandwidth (and performance) of a thread trigger opposite
behavior in the co-runner

e To leverage the finding, two thread allocation strategies have been proposed
e Goal: balancing the L1 bandwidth among all the L1 caches

e The proposed policies outperform the Linux thread allocation policy in both
performance and fairness
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Evaluation methodology
Benchmark classification

e Benchmarks are classified in four categories
» According to their L1 bandwidth

Classification Benchmarks i

Extreme L1 bandwidth | h264ref, bwaves, gamess

High L1 bandwidth perlbench, bzip2, hmmer, libquantum,
leslie3d, namd, dealll, gemsFDTD

1000 -

Medium L1 bandwidth | gcc, gobmk, sjeng, astar,
xalancbmk, zeusMP, povray, lbm

Low L1 bandwidth mcf, omnetpp, milc, gromacs,

sjeng
libquantum
astar

hzip2
xalancbmk

h2edref
hwaves
gamess
mile
zeusmp
lesliesd
namd
dealll _
povray I

cactusADM, soplex

perlbench [

TR (trans/usec)
oun
o 8
]
1
mcf — i
]
1
1
1
omnetpp E——— E
1
]
1
:
H
_=
gmmacg [ty :
cactusADN — i
1
1
1
soplex I !
[]
]
Ihpy

GemsFOTD

Table 1. Mix classification Fig 1. Average TR, for SPEC CPU 2006 benchmarks
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Introduction

e A critical shared resource in any CMP is the memory bandwidth
 Main memory bandwidth

e LLC bandwidth

e Bandwidth at any shared cache

e Addressed with bandwidth-aware schedulers

e L1 caches are private to cores, but shared among threads in SMT

cores

» L1 bandwidth contention may impact the performance

Instruction cache

—

Instruction queue

PACT’13, Edinburgh, United Kingdom

8 11

Register file thl

==

Register file th2

Functional and
arithmetic units

Data cache
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